低降伏鋼板剪力牆在建築耐震補強上之應用(三)
Application of Low Yield Strength Steel Shear Panel on the Enhancement of Seismic Resistance of Building Structure (3)

計畫編號：NSC 89-2625-Z-011-003

執行期間：88/08/01 ~ 89/07/31

主持人：陳先金 國立台灣科技大學營建系教授

一、中文摘要(關鍵詞：低降伏鋼，減能裝置，應變率，耐震性能，能量消散，金屬阻尼器，鋼板剪力牆)

低降伏強度鋼剪力消能裝置，具高強度、高効率、高韌性及高能量控制之特性，可作為鋼板剪力牆或金屬阻尼器設計
應用。本文延續前人研究設計一系列不同動態結構試驗，就試驗之不同載荷速度、觀察應變率對低降伏強度鋼剪力消能
裝置的各種影響。

依本研究之試驗所施加速度、中速、快速三種動態載荷作用下，低降伏強度鋼剪力消能裝置在強度、動力、韌性及遲滯
消能行為的表現皆能穩定發展，證明低降伏強度鋼剪力消能裝置無論在任何速度作用下，皆可發揮其能力，是為一種佳
的金屬消能阻尼器。

英文摘要(Key Words: low yield strength steel, LEAD, energy absorption device, strain rate, seismic resistance characteristics, energy dissipation, metallic damper, steel shear wall)

Low-yield-point steel Energy Absorption Device (LEAD) possesses high stiffness, high strength, large ductility and large energy absorption ability. It can be desined as a steel shear wall or a metallic damper. This reported research follows reasearches, and series of specimen were tested under three different levels of strain rate to study the dynamic behavior of the LEAD. The results show that the performance of LEAD on strength, stiffness, ductility and energy absorption behavior are very stable. Test result demonstrated that the LEAD system is an excellent metallic dissipation damper.

二、計劃緣由及目的

隨著新材料低降伏強度鋼板的開發
（其降伏強度約為 A36 鋼材的 1/3，伸長
率約為 58%），可以利用其低降伏強度、
高延展性的特性，取代傳統鋼板剪力牆
使用一般結構鋼材之剪力鋼板，進而製成低
降伏鋼板剪力牆（Low yield point steel
shear panel），使得鋼板剪力牆的應用有
了更好的選擇。而我們亦可利用低降伏鋼
的低降伏強度、高延展性特性，並在低降
伏強度剪力鋼板上，予以配置適當的加力
鋼板，製成低降伏強度鋼剪力消能裝置
（Low-yield-point steel Energy Absorption
Device，LEAD）。其基本原理如同鋼板剪力
牆，亦受剪力控制，所不同的是剪力牆
必須完全分佈於構架，而此裝置類似單位
阻尼可以用耐震門柱或斜撐結合，故我們
可以稱其為被動能量消散系統（passive
ergy dissipation system）之金屬消能元
件（金屬阻尼器），因其除了溝通的動能
與強度外，亦具有足夠的動能和穩定的遲
滯消能行為，使得地震輸入能量能夠經由
其低降伏剪力鋼板有效地消散，達到耐震
消能能力，故在功能設計法裡，可將低降
伏強度鋼剪力消能裝置歸類為耐震元件
系統。

三、研究方法與成果

本研究以前人的研究為基礎，以低降
伏強度鋼板作為剪力鋼板，左右邊緣作
適當處理，製成兼具剪力及消能器功能
之低降伏強度鋼剪力消能裝置。而試驗參
數在動態載荷速度、中鋼公司在有關低
降伏鋼材試料研究顯示，針對拉力試片
在不同的拉伸速度下，其降伏強度之變化
如圖 1 所示，我們可察覺低降伏鋼隨著應
變率之增大，降伏強度也隨之增加。也因
此可得知，低降伏鋼會因應變率的變化，
其受力反應行為也會不一樣。故本研究難
對此特性，運用於低降伏強度鋼剪力消能
裝置，藉由所受載荷速度不同，觀察其初
始動態、高降伏強度、極限強度、應變硬化效
應及能量消散等結構行為。

3-1 結構試驗

本試驗之九組試體以位移控制
(displacement control) 較進行試驗。在
試驗前，將剪力鋼板一面塗上石膏，以利
觀察剪力鋼板形變情形；在試驗過程中，
加載時以慢速 (2.5mm/sec) 、中速
(50mm/sec) 、快速 (100mm/sec) 三種
不同的速度，每種速度又分為三種位移增量
施加。試料每週期之最大位移以一倍、
兩倍、三倍之增量 (δy) 進行反覆載荷，
以觀察不同增量對剪力消能裝置過載消
能行為的影響。其最終試驗強度衰減到極
限強度的 80% 以下則停止試驗。

3-2 理論極限強度與試驗結果討論

理論極限強度公式依文獻 [4] 推導

\[V_s = \frac{\alpha \sigma_{YM} L_1 + b_1 f_1 \sigma_{YM}}{b} \] (3-2)

其中 YR：降伏比 (YR=0.28, 0.27, 0.26)
\(\alpha \)：應變硬化發展率 <=1
\(\alpha = 0.5-0.75 \)
N ：為 N x N 個格子單元之 N
因為一體的鋼材降伏比(yield ratio = F_s/F_u) 約為 0.6-0.8 左右，本研
究考量低降伏鋼受動態載荷下，壓力會隨
著應變率增加而增加，故 YR 依圖 1 推求
判斷分別為 0.28 (慢速)、0.27 (中速)、
0.26 (快速)。

3-3 破壞模式討論

一個理想的低降伏鋼板剪力牆的破
壞模式，應該是在加載板部份能提供足夠
的束制，在剪力鋼板部份能完全發揮其消
能效果，即全部之格子單元 (panel) 都能降
伏破壞，如此可完全發揮其材料特性，以
達到理想的經濟效益。

值得一提的是，本試驗邊界鋼板採用
變形面處理，此為低降伏強度鋼剪力消能
裝置與板梁最大之不同，板梁在變位方面
需限制過大變位的產生。翼板需具足夠的
剛度；而低降伏強度鋼剪力消能裝置是藉
由大量塑性變形來消散能量。故其左右
邊界鋼板之剛度不可過高，以免妨礙變位
的發生；而且若將邊界板採變形面設計，
預留邊界板中間段為降伏區，一方面在低
降伏強度鋼剪力消能裝置未達極限強度
時，不避免邊界鋼板上緣不變短過大壓力集
造成鋼板接處提早斷裂，另一方面在低降
伏強度鋼剪力消能裝置達極限強度後，其
剪力鋼板幾乎完全降伏消能，故消能裝置
此時可視為剛框架構受力，形成邊界板上
緣不變短提升，因此上緣邊界鋼板也有足夠
的面積來應對上部變短梯度的提升，一旦
邊界鋼板設計細部處理恰當，不但可以讓
剪力鋼板發揮塑性消能能力，同時也充分
善用邊界鋼板的輔助性質，使低降伏強度
鋼剪力消能裝置達到經濟效益。

3-4 拖屈討論

本試在剪力鋼板兩側接近幾何中
心處各安排一支測微計，用來測測試體在
受力後，剪力鋼板之拖屈過程。量測值都
可以顯示剪力鋼板拖屈發生時皆在極限
強度之前 1-6 個週期 (cycles) 如圖 2(a)、
(b)、(c) 軸向標示處，其行為符合低降伏
鋼剪力消能機構之理論行為。

3-5 應變性討論

我們從最大旋轉角的觀點來看，如圖
2(a)、(b)、(c) 所列三種狀況，低降伏鋼
剪力消能裝置最大旋轉角可高達 0.14rad
（千分之一百四十）以上，而若我們考慮
實際結構設計側傾角 0.02rad（千分之二
十）加上安全係數及框架與剪力鋼板互動
行為等等，可以將低降伏鋼剪力消能裝置
側傾角以 0.04rad（千分之四十）為目標
當可滿足在強烈地震下之需求。且於具足夠
的變形餘額，故其屬低降伏鋼剪力消能
裝置之極限強度狀態之前來設計，甚至取
拖屈狀態之前設計接可滿足要求，證明低
降伏鋼剪力消能裝置之韌性極佳符合結
構設計需求。

3-6 能量討論

我們考量實際仕覺力設設計需求，分別取低降伏鋼剪力消能裝置的極限強度時累積能量及側傾角 0.04rad（千分之四十）時累積能量來討論，如圖 3 (a)、(b) 所示。從載荷速度對能量累積影響來看，中速及快速試驗的能量累積結果略高於慢速試驗，但並不明顯，不過其結果足可證明在載荷速度如何，低降伏鋼剪力消能裝置遲滯消能能力不受影響仍可穩定累積能量。

而側位移增量對能量累積影響亦明

四、金屬消能器在結構補強上之應用

NEHRP（National Earthquake Hazard Reduction Program）為目前較完備的結

五、結論與建議

以下為本研究試驗之及分析結果所得

1. 依中鋼所作材料試驗顯示，低降伏鋼板之拉力強度會隨應變率（strain rate）增加而增加（但強度增幅度會遞減），經過本實驗結果顯示，低降伏強度鋼剪力消能裝置之極限強度亦會隨載荷速度的增加而提高。

2. 本研究之低降伏強度鋼剪力消能裝置的韌性相當良好，若我們考慮實際結構設計側傾角 0.02rad（千分之二十）加上安全係數及構架與剪力鋼板互動行為等等，可以估計低降伏鋼剪力消能裝置側傾角 0.04rad（千分之四十）即可滿足實際工程需求，故其實取低降伏鋼剪力消能裝置之極限強度狀態（約 0.06~0.07rad）來設計，甚至取極端狀態（約 0.04~0.05rad）來設計皆可滿足要求，可證明低降伏鋼剪力消能裝置之韌性極佳符合結構設計需求。

六、參考文獻

【1】H.R. Evans “Longitudinally and Transversely Reinforced Plate Girders” Department of Civil and Engineering, University College, Cardiff, UK, Plated Structures Stability and Strength, Edited by R., Narayanan, Chapter 1, New York, (1983).

【2】嚴家榮，“低降伏鋼在鋼板剪力牆之應用” 碩士論文，國立台大科技大學營建工程技術研究所，臺北（1997）。

【3】張耀文，“低降伏鋼在鋼板剪力牆之耐震特性” 碩士論文，國立台大科技大學營建工程技術研究所，臺北（1998）。

【4】侯信智，“低降伏強度鋼剪力消能裝置之耐震特性”，碩士論文，國立台大科技大學營建工程系，臺北（1999）
圓 1 應變率對低屈服鋼板降伏強度之影響

圖 2 (a) PL1 無因次化載重位移遲遲曲線（慢速一倍增量）

圖 2 (b) PL2 無因次化載重位移遲遲曲線（慢速兩倍增量）

圖 2 (c) PL3 無因次化載重位移遲遲曲線（慢速三倍增量）

圖 3 (a) 試體達到極限強度時之能量曲線

圖 3 (b) 試體在側傾角千分之四十時之能量累積曲線