凸輪機構 CAD/CAE/CAM 整合系統之研究

李興生
國立虎尾技術學院動力機械工程系

摘 要

本文旨在 Borland C 的系統環境，應用同步工程的觀念，透過電腦輔助設計、繪圖、分析及製造技術相關軟體整合運用，發展交談式畫面之凸輪機構 CAD/CAE/CAM 整合系統。為驗證系統的實用性，文中以滾子從動件盤形凸輪機構為例，說明系統操作過程及整合功能，再以 DNC 連線至 CNC 鐳床，實際切割加工並組裝一盤形凸輪機構之機構。研究結果顯示，本系統不僅簡化凸輪機構設計、繪圖、分析與製造繁瑣過程，提昇凸輪機構自動化之能力，而開放式架構的設計方式，亦提供凸輪機構系統在設計過程中彈性運用的功能。

關鍵詞：凸輪機構、CAD/CAE/CAM、整合系統、同步工程。

DEVELOPMENT OF A CAD/CAE/CAM INTEGRATED SYSTEM FOR CAM MECHANISMS

Hsin-Sheng Lee
Department of Power Mechanical Engineering
National Hwei Institute of Technology
Yulin, Taiwan 632, R.O.C

Key Words: cam mechanism, CAD/CAE/CAM, integrated system, concurrent engineering.

ABSTRACT

Based on the concept of concurrent engineering, in a Borland C environment, this paper presents an interactive CAD/CAE/CAM integrated system for cam mechanisms. To verify the methodology of the proposed system, a complete design procedure for a roller follower plate cam mechanism has been demonstrated. Moreover, by using DNC software, the NC program code is transferred to the machine center. Then, a prototype of the plate cam mechanism was manufactured and assembled. The results indicate that the system not only simplifies the CAD/CAE/CAM cam mechanism processes, but also promotes automation capability for cam mechanism production. Also the open architecture allows flexible manipulation for cam mechanism production systems.

一、前言

凸輪是從從動件按其指定運動的機構，其表面或槽
槽形狀複雜，但其運動是簡單的旋轉、搖擺或滑行。凸輪機構的從動件形狀簡單，運動要求以直線或搖擺者居多，
運動的曲線有許多種類型。利用凸輪機構可將簡單的運動
輸入轉換成預定的複雜運動，尤其從動件在運動循環中需
要某階段的停留時，採用凸輪機構是較為簡單的方法。凸
輪機構構造簡單，體積不大，可隨處安裝，又能準確控制運動的輸出，所以經常出現在工具機、印刷機、內燃機等各種不同類型的自動機械上 [11]。

CAD/CAM/CAM 系統相關發展文獻中 [2], 依
據黃理強委員所結議的 Pro/E 網絡導線架的實體模型，
發展導線架自動設計系統。對於 DIP 型態的導線架，能
透過計算機化設計，快速完成導線架之設計繪製工作，並
giC 轉移模具的初步設計。周明 [3] 以組合數碼式電腦
輔助設計及製造系統，應用數碼式 CAD 系統，從粉末金
屬產品設計概念，具體呈現後即開始設計，然後以 CAM
系統製作粉末金屬模具，透過產學合作，於專業粉末
金屬模具製作模具製作及粉末金屬成型、離芯等後續製程，
製造出實際之粉末金屬產品。林欽九、林進誠 [4] 以射
頭接頭之聯結結論為例，以介面支援方式整合 CAD/CAM/CAM
系統，達成自動化的設計分析製造。並以 EMCO 接桌上型
CNC 車床導航測試完成成品，提供工具自動化生產整合
模式範例。許進仁 [5] 建立了多機型帶電鍍層製程之實
體化 CAD/CAM/CAM 整合系統，將輔助設計沖压形狀、
預測模擬製作過程之材料流動、預估模具模組負荷及預估
平均成形變形、計算及模具加工路径、產生 NC 程式。以
以上文獻之數位化實體模型設計系統及系統整合構架可
供本文參考研究。有關凸輪電動輔助設計及製造系統相關
文獻中，唐俞鴻、鄭新有、顏黃森 [6] 利用十八位元個人
電腦，以電腦系統一電腦整合盤型凸輪設計及製造
之設計軟體，在 CAD 方面，係以程式化原理求出不同運
動方程式及從動件形式下的盤型凸輪外廓；在 CAM 方面，
係根據凸輪外廓以圓弧近似法求得 NC 碼所需之數據。江
榮翰 [7] 為解決凸輪設計的問題。於個人電腦上發展一
套交談式設計軟體，包括從動件運動曲線設計、凸輪外廓
合成、凸輪內廓設計及刀具路徑路徑的輸入，及對其作
一般性的幾何與傳動特性分析等，同時程式亦包括凸輪最佳
設計功能。蔡世昌、江可達 [8] 發展一套電腦程式，對
所有整型凸輪機構之適當運動曲線及所要求之動態運
動特性加以分析，而獲得其升降位移圖、速度提升圖、升
程加速度圖及凸輪輸出圖等，並產生凸輪輸出曲線之數
值，及 NC 程式直接切削加工機構，而將凸輪輸出
外形圖完成。以上文獻之盤型凸輪設計理論探討及系統
設計流程可供本文參考研究。鄭日明 [9] 以電腦輸入法
發展平板凸輪多功能彈性整合系統，藉以提供運動曲線之
組合設計，凸輪參數由系統計算凸輪設計之各功能，則
ACD/CAM 圖形轉
動及動態路徑模擬功能，可確保凸輪機構之正確...
3. 電腦輔助繪圖系統：以數位化設計及單一資料庫的觀念來建立模型，將設計概念融入參數化模型為基礎的實體模型中。首先經由 part 模組，進行各個零件 3D 參數化實體模型的繪製，再經由 assembly 模組組態機構運動方式及部位，組立凸輪機構運動關係之實體模型，以便將運動關係資料傳遞至 Pro/Mechanica 做動態模擬及運動分析。

4. 電腦輔助分析系統：將組立完成之凸輪機構實體模型幾何資料，直接傳遞至 Pro/Mechanica，在 Motion 模組設定機構運動參數及負載參數後，即可進行運動模擬及 s-v-a 運動分析，最後利用 Design Variables, Parameters, Design Parameters 等指令做系統參數的設定，即可執行凸輪機構最佳化設計之工作。

5. 電腦輔助製造系統：將 Pro/E 所設計的凸輪機構各零件圖轉換成 iges 檔，經由 MasterCAM 將 iges 檔轉成 g63 檔，然後選擇外形銑削使其成一封閉外形，接著設定切削參數，如銑削深度、刀具直徑、主軸轉速、進給率、分層銑削、刀具補正等，使之產生刀具路徑，經後處理產生 NC 碼，再進行模擬加工。模擬加工之後，以 DNC 連線至 CNC 錶床，即可加工製造凸輪機構各零件，再組裝成凸輪機構。

三、理論方法

1. 設計理論

凸輪機構設計首先根據設計要求決定從動作運動曲線的限制條件，其次再依這些條件的特性選取適當曲線加以組合，並以設計好的運動曲線來合成凸輪尺寸，接著針對此合成所得的凸輪進行各種幾何特性分析。分析的結果若無法滿足設計要求，就回到上述步驟去修改原有的設計，直到滿足設計要求為止 [15~17]。本文凸輪設計步驟如下：

(1) 確定運動要求

設計凸輪機構的首要步驟，是確定其運動設計要求，即是凸輪機構主動件(一般為凸輪)運動一個工作週期，其從動件相對於主動件的運動關係。當凸輪旋轉一週時，從動件是做復復直線運動、或是來回擺動運動；從動件的運動是屬雙暫停運動、單暫停運動，或是其它複雜運動；以及凸輪運動關係式為何，這些運動要求確定後，才能進行凸輪機構的相關設計。

(2) 選運動曲線

由於凸輪機構是藉凸輪曲面的輪廓與從動件相接觸來駕駛運動，所以凸輪之輪廓曲線必須依照所要求的從動件運動特性反應求得，因此根據所要求的運動關係，來決定合乎運動要求的凸輪運動曲線，是設計凸輪機構中相當重要的一環。

凸輪運動曲線是指從動件受凸輪驅動時，從動件的運動的運動狀態(位移、速度、加速度)相對於凸輪(動件)的運動狀態，高於位移曲線的曲率與從動件的運動狀態非常相似，且其二次微分與從動件的加速度成正比，因此若要位移曲線已知，依次將它對時間微分，即可得速度曲線、加速度曲線的運動曲線。本文運動曲線的種類包括以下幾種：

(1) 基本曲線
包括等速度曲線、等加速度曲線、簡谐運動曲線及懸垂曲線。
(2) 多項次曲線
包括低次及高次多項式次曲線。
(3) 修正曲線
包括修正梯形曲線、修正正弦曲線、修正懸垂曲線及修正等速度曲線。

設計限制
設計凸輪機構時，須考慮設計限制，以合乎實際應用之需求，如速度與加速度的規定最大值、允許的空間、機件尺寸的大小、壓力角、許可轉矩、許可接觸應力、材料限制、加工精度、表面粗糙度、以及成本限制等。基本上，凸輪的尺寸是愈小愈好，除了所佔的空間較小外，在高速運動時，其慣性力、噪音、以及振動等問題亦較小，然壓力角、過切現象等，限制了凸輪尺寸大小的設計。本文設計限制如下：
(1) 運動曲線合式
根據運動曲線連接平滑連続的原则，連接合成曲線時，前段曲線位移、速度、加速度之終值與後段曲線起始值必須相等。
(2) 壓力角
凸輪機構的設計，除了要達到預期的運動功能外，其傳動性能亦必須加以考量，以提高傳動效率並避免發生卡死現象與出現閉鎖位置，壓力角即為評估凸輪機構傳動性能的一種指標。設計凸輪機構時，希望在一個運動週期中，壓力角不會大於限定值\(\alpha_{\text{max}}\)。一般而言，往復式從動件的\(\alpha_{\text{max}}\)限定為30°，以防止從動件承受太大的側向負荷，擺動型從動件的\(\alpha_{\text{max}}\)則限定為45°。利用\(\alpha_{\text{max}}\)的限制，可以求出凸輪機構的基本參數尺寸，如基圓與滾子的大小等。凸輪機構的最大壓力角若超過許可值，則必須變更設計參數，改用較大的基圓整徑或重新選擇運動曲線。
(3) 適切
當凸輪輪廓上某一點的曲率大小不適當時，凸輪從動件無法在其應有的軌道上轉動，此即產生適切現象。凸輪輪廓直徑之最小曲率半徑的絕對值，大約要維持在從動件滾子半徑的2到3倍，凸輪從動件系統才能確實轉動。適切的現象可由加大凸輪基圓直徑、減小滾子直徑、或重新選擇運動曲線來加以消除。

凸輪輪廓形成理論
在相同位移曲線下，不同的從動件將形成不同的凸輪輪廓。凸輪輪廓曲線設計方法有圖解法與解析法。圖解法較費時且精確度較差，爲了提高精確度，本文採用解析法，利用包絡論理論求凸輪輪廓直徑座標。本文針對以下四種不同形式之從動件，以解析法來進行盤形凸輪輪廓曲線座標計算。

(1) 往復式滾子從動件
\[
\begin{align*}
x &= e \sin \theta + (d + s) \cos \theta - c \\
y &= -e \cos \theta + (d + s) \sin \theta - r_f \sin \beta
\end{align*}
\]
式中
\[
d = \sqrt{r_b^2 + r_f^2 - c^2}
\]
\[
\beta = \tan^{-1}\left(\frac{(d + s) \sin \theta - (e + d \cos \theta) \cos \theta}{(d + s) \cos \theta - (e + d \sin \theta) \sin \theta} \right)
\]
(2) 往復式平板從動件
\[
\begin{align*}
x &= (r_b + s) \cos \theta - d \frac{d \theta}{d \phi} \sin \theta \\
y &= (r_b + s) \sin \theta + d \frac{d \theta}{d \phi} \cos \theta
\end{align*}
\]
(3) 搖擺式滾子從動件
\[
\begin{align*}
x &= c \cos \theta - A \cos \beta + e \sin \beta \\
y &= c \sin \theta - A \sin \beta + e \cos \beta
\end{align*}
\]
式中
\[
A = \cos \theta + \sin^{-1}\left(\frac{c}{r_b}\right) \sqrt{\left(\frac{d \phi}{d \theta}\right)^2 - 1}
\]
\[
\beta = \phi_0 + \theta - \phi
\]
\[
\phi_0 = \sin^{-1}\left(\frac{c}{r_b}\right)
\]
根據上述設計理論及限制，本文以 Visual C 编寫凸輪設計軟體，圖2所示為設計系統流程。
2. 實體模型設計步驟
建立 CAD/CAE/CAM 整合系統的最主要障礙，就是如何表達幾何形狀 [18]，因模型建構方法除了影響工件描述的方便性及效率外，也會影響後續的應用（如分析及加工）。凸輪機構的設計是結合綜合性知識的實務運用，在設計時必須考慮需求功能及整體概念設計，為提高設計自動化的效益，並延續至分析及加工的應用，本方式採用 Pro/E 以參數化設計及單一資料庫的觀念來建構凸輪機構實體模型。凸輪機構及各零件參數化實體模型設計步驟簡述如下 [19,20]：
李興生：凸輪機構 CAD/CAE/CAM 整合系統之研究

圖 2 設計系統流程

(→) 由 Pro/E 之 part 模組建立各零件之 3D 參數化實體模型。本文以凸輪為例，說明建立參數化實體模型之步驟：
(1) 建立基準面及基準座標系統，以便後續的繪圖工作。
(2) 進行凸輪外廓軌跡點數據抓取工作。
(3) 把所有軌跡點連接起來，以形成凸輪外廓，如圖 3 所示。
(4) 由凸輪外廓長成實體模型，如圖 4 所示。
□ 由 Pro/E 之 assembly 模組建立凸輪機構組立之實體模型。

本文在 assembly 模組之 Mechanism 功能下，定義機構部位及運動方式，組立凸輪機構運動關係之實體模型，以便將組立資料傳遞至 Pro/Mechanica 做動態模擬及運動分析。凸輪機構組立及運動關係如圖 5 所示。

3. 動態模擬及運動分析

分析為設計的後盾，實際的分析數據不但可確保產品品質，更可證實設計的正確性。Pro/Mechanica 可提供使用者一個雙向溝通的分析工具，Pro/Mechanica 使用單一資料庫的概念，直接對 CAD 資料作分析，而且 Pro/E 所使用的尺寸參數，亦可以在 Pro/Mechanica 中作分析比較的變數，此外，Pro/Mechanica 更可利用分析結果，直接修改 CAD 的設計，如此雙向的溝通，使得原本設計與測試之間來回循環所需花費的時間大幅縮短 [21]。本文就整合完成之凸輪機構的實體模型運動關係幾何資料，直接傳遞至 Pro/Mechanica 之 Motion 模組，設定機構運動關係及機構轉速後 [22]，即可模擬凸輪及從動件間的傳動情形，藉以瞭解設計參數定義正確性及圖形過切情形，再定義接頭軸線運動方向 (Motion → Results →
圖 3 凸輪廓形圖

圖 4 凸輪實體模型

進行機構參數化實體模型設計：Pro/Mechanica 進行機構

四、系統整合原理

進行機構參數化實體模型設計：Pro/Mechanica 進行機構

進行機構參數化實體模型設計：Pro/Mechanica 進行機構

進行機構參數化實體模型設計：Pro/Mechanica 進行機構

進行機構參數化實體模型設計：Pro/Mechanica 進行機構

進行機構參數化實體模型設計：Pro/Mechanica 進行機構

進行機構參數化實體模型設計：Pro/Mechanica 進行機構

進行機構參數化實體模型設計：Pro/Mechanica 進行機構
五、實例說明

本文以往復式滾子從動件盤形凸輪機構為例，設計參數之轉速為10 rpm，基圓半徑$r_a=50$ mm，從動件滾子半徑$r_f=6$ mm，偏差量$e=0$。從動件運動要求為雙暫停運動，當凸輪的部位移為0°～120°時，從動件上升37.5 mm；當凸輪的部位移為120°～150°時，從動件暫停；當凸輪的部位移為150°～270°時，從動件下降37.5 mm；當凸輪的部位移為270°～360°時，從動件暫停。凸輪設計以修正正弦曲線合成外廓曲線。依設計實例中國油泥子從動件盤形凸輪的數據，加工盤形凸輪、從動件桿臂以及基座等三部份。鋼削盤形凸輪的凸輪外廓時，是以盤形凸輪輪廓曲面方程式，求出盤形凸輪輪廓外形的輪廓曲面點數據存在資料庫後，利用Master CAM軟體將這些點數據，以IGES的方式進行檔案轉換成圖形檔，再進行圖形的修正，可得盤形凸輪輪廓外形的閉合輪廓。接著，選擇刀具直徑$\phi 12$ mm的端銑刀，並設定刀具直徑與外形輪廓等參數，即可將之轉換成NC程式碼，且可在電腦上先行模擬刀具銑削出的盤形凸輪輪廓，如圖7所示。再經由個人電腦與CNC銑床之電腦控制器連線，用DNC傳輸軟體，把NC程式送至綜合加工機以進行盤形凸輪輪廓的實際銑削。加工完盤形凸輪後，同時再加工從動件與基座等其它零件，最後連同盤形凸輪加以組裝，即可完成一組油泥子從動件盤形凸輪機構的製作，組裝完成之機構成品如圖8所示。在系統交談式視窗畫面之下，輸入實例相關設計資料，即可呈現實例機械特性數值及圖形，如圖9所示。

六、結論

目前由於系統軟體的更新，提供了衆多的輔助生產工具，但在高度自動化的要求下，整合多種工具成爲大系統生產自動化的趨勢，而介面支援系統的觀念及技術，也將成爲整合系統中的關鍵。因應CAD/CAE/CAM整合發展趨勢，本文在Borland C環境下，以盤形凸輪機構為研究範圍，整合CAD/CAE/CAM系統。首先依凸輪機構設計理論以Visual C分析，確定運動要素，選擇運動曲線，計算凸輪外廓，並將Pro/E及Pro/Mechanica組立及運動分析圖解連結至Borland C系統環境下。在繪圖方面以Pro/E進行機構參數化實體模型設計；在分析方面，將Pro/E建立的機構實體模型運動資料傳遞至Pro/Mechanica進行運動模擬，運動分析及最佳化設計；在製造方面，將Pro/E建立的零件實體模型資料傳遞至MasterCAM進行模擬加工，並以CNC銑床製作。研究結果顯示，本系統具有以下功能與特性：

1. 本文應用同步工程的觀念，整合凸輪機構概要設計、零件細部設計與機構功能測試，各步驟均有設計變更，則其它步驟亦產生相同的設計變更，如此可確保設計之正確性，避免反覆修改之耗時性，改善過去凸輪機構缺乏參數化實體模型整體設計概念，有效提升凸輪機構設計、分析與製造自動化的能力。

2. 本文以交談式輸入介面法，提供凸輪機構多功能彈性整合CAD/CAE/CAM系統，可依設計的組合變化作任何搭配，改善過去凸輪機構系統缺乏彈性整合之缺失。

3. 本文採開放式架構的設計方式，以介面支援方式溝通
符號索引

<table>
<thead>
<tr>
<th>符號</th>
<th>意義</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>凸輪的總回轉角位移</td>
</tr>
<tr>
<td>θ</td>
<td>凸輪軸的角位移</td>
</tr>
<tr>
<td>α</td>
<td>壓力角</td>
</tr>
<tr>
<td>s</td>
<td>位移</td>
</tr>
<tr>
<td>v</td>
<td>速度</td>
</tr>
<tr>
<td>a</td>
<td>加速度</td>
</tr>
<tr>
<td>x</td>
<td>凸輪軸上的 x 座標</td>
</tr>
<tr>
<td>y</td>
<td>凸輪軸上的 y 座標</td>
</tr>
<tr>
<td>c</td>
<td>擺動軸與凸輪軸心之距離</td>
</tr>
<tr>
<td>l</td>
<td>從動件短</td>
</tr>
<tr>
<td>r_s</td>
<td>基圓半徑</td>
</tr>
<tr>
<td>r_f</td>
<td>捲子從動件半徑</td>
</tr>
</tbody>
</table>

参考文獻

1. 陳振山、林遠源等，機械學，第172頁，高立圖書公司，台北（1998）。
2. 傅世隆，「IC 專線控制器之設計」，碩士論文，國立成功大學，台南（1999）。
3. 周明，「粉末冶金模壓之自動化設計與製造實作研究」，全國自動化科技研討會，民雄，第39-44頁（1999）。
4. 陳欽善、林逸誠，「詳細之連接線 CAD/CAM 整合系統之介面支援系統之開發應用」，全國技術及職業教育研討會，第423-432頁（1995）。
5. 謝進忠，「特種車的程控機械 CAD/CAM 整合系統」，技術學刊，第十三卷，第三期，第199-227頁（1998）。
6. 賴綿鴻、鄭文有和姚頌森，「交談式個人電腦整合盤形凸輪設計與製造」，全國技術及職業教育研討會，雲林，第35-46頁（1988）。
7. 江樂煙，「電腦輔助平板凸輪機構設計」，碩士論文，國立成功大學，台南（1990）。
8. 賴德昌、江可達，「圓盤式旋轉曲線選用之分析和電腦程式設計」，精密學報，第十八期，第19-46頁（1996）。
9. 張日勝，「利用桑等輸入法發展平板凸輪多功能彈性整合系統」，技術學刊，第十二卷，第二期，第99-110頁（1997）。
10. 林本正、杜祥喜和蕭郭吉，「滾子輸式凸輪電腦整合設計製造系統技術」，全國自動化科技研討會，民雄，第67-74頁（1999）。
11. 何信、劉俊佑，「具圓柱滾子從動件球面凸輪之設計」，中國機械工程學會全國學術研討會論文集，台南，第27-33頁（1998）。
12. 楊興生、鄭日福，「自動化管路繪圖系統之研製」，技
李興生：凸輪機構 CAD/CAE/CAM 整合系統之研究 641

術學刊，第十四卷，第三期，第 489-496 頁 (1999)。
13. 李興生，「機械元件實體模型電腦輔助設計系統之發展」，技術學刊，第十四卷，第四期，第 653-659 頁 (1999)。
14. 李興生，「管路設計與 3D 繪圖整合系統之發展」，技術學刊 (已接受)。
15. 鞍鶴曾，機械學，第 177-228 頁，機械圖書公司，台北 (1999)。
16. 姚榮法，凸輪與凸輪機構，第 247-249 頁，國防工業出版社，北京 (1993)。
17. 趙礎，丁偉曾，梁錦阜，凸輪機構設計，第 9-34 頁，高等教育出版社，北京 (1993)。
19. 林清安，Pro/ENGINEER 零件設計，高立圖書公司，台北 (1999)。
20. 林清安，Pro/ENGINEER 零件組立，高立圖書公司，台北 (1999)。
21. 隆乃楷，「設計流程導入 CAD 解決方案提昇產業競爭力」，CADesigner，第 140 期，第 162-164 頁 (1999)。
23. 鄭高仁、楊進賢，MasterCAM 範例使用手冊，第 11-1-11-16 頁，華宇科技有限公司，台南 (1997)。

88 年 09 月 29 日 收稿
88 年 12 月 21 日 初審
88 年 12 月 30 日 复審
89 年 01 月 18 日 接受